If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2+8z-8/27=0
We multiply all the terms by the denominator
z^2*27+8z*27-8=0
Wy multiply elements
27z^2+216z-8=0
a = 27; b = 216; c = -8;
Δ = b2-4ac
Δ = 2162-4·27·(-8)
Δ = 47520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{47520}=\sqrt{144*330}=\sqrt{144}*\sqrt{330}=12\sqrt{330}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(216)-12\sqrt{330}}{2*27}=\frac{-216-12\sqrt{330}}{54} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(216)+12\sqrt{330}}{2*27}=\frac{-216+12\sqrt{330}}{54} $
| -6-2a^2=-6a-4 | | 3x-7-2x=-4*3 | | -45+15y=15 | | 2x-(x-3)=4(x-5)-1 | | 9h+1=100 | | 9.5+2m=11.5 | | 17-2r=7 | | 3(−6x+4/2+3)−5=25 | | Y=7x;(-5,-49) | | 90=20y+30 | | 2/5y+1/5=4y-13/5 | | 8p^2-20p=0 | | -3x+-10x=104 | | (x+2)(x-4)=4+2x | | 8x(4^x)=16384 | | 7x+13=-99 | | 40=4x-8 | | 2x-3(4x+3)=31 | | 5(2x+2)+6=10x+16 | | -12=30-2(7+7s) | | 11x+3=3x+25 | | Y=0.1x-120 | | 20x/4x^2=6 | | 20x/4x^2=5^3 | | 7÷2w-1÷3=-4÷3w-5 | | 5x^=-15x | | 5(3-2f)=4f-1 | | 1/2x+8=x | | -8x-x=x+-4x | | 4x-7=31/2+x | | -8+-1x=x-4x | | 7e-8=-120 |